снком. 4076

Chromatography of aromatic amino acid derivatives on polyamide thin layers*

In 1964, SEGURA-CARDONA AND SOEHRING reported (in German) a thin-layer chromatographic method for separating and quantitating some catecholamine metabolites which was 100 times as sensitive as paper chromatography¹. In 1966 an English translation of part of this paper appeared². The present report describes our experience with, and modifications of, this method. Data are presented for aromatic amino acids not previously studied on polyamide and for two solvent systems not previously used with this medium.

Methods

Five 20 \times 20 cm plates are prepared from 7 g of polyamid dissolved in 45 ml of methanol. Polyamide (Woelm) was used exclusively. (The Macherey-Nagel polyamide distributed by Brinkman is totally unsatisfactory.) One hundred nanograms of the substances listed in Table I were spotted, air dried, and developed in isobutanolglacial acetic acid-cyclohexane (80:7:10). The following sprays were used: (I) diazotized *p*-nitroaniline was made as originally described^{1,2}; (2) a suitable diazotized sulfanilic acid spray was made by substituting an equal amount of sulfanilic acid for the *p*-nitroaniline in solution spray (I); (3) ethylenediamine was made up as originally indicated^{1,2}. There were no significant differences when the ethylenediamine was diluted with water or sodium hydroxide. The diazotization reactions were examined

Substance	Solvent systems					
	Isobutanol– acetic acid– cyclohexane	I sopropanol– ammonia	Butanol– acetic acid			
Epinephrine	46	85	91			
Norepinephrine	29	7Ğ	87			
Normetanephrine	56	85	93			
Metanephrine	72	88	96			
Dihydroxymandelic acid	9	75	44			
Dopamine	39	82	89			
Vanilmandelic acid	31	8o	64			
3-Methoxy-4-hydroxyphenylglycol	60	81	87			
Dihydrocyphenylalanine	18					
Adrenoterome	36 !	77	32			
Tyrami	74	71	100			
Serotonin	38	76	92			
Dihydroxyphenylacetic acid	23	85	66			
Homogentisic acid	55	79	8o			
5-Hydroxytryptophan	20	86	91			
Triiodotyrosine	15 .	92	85			
Phenylpyruvic acid	24	82	66			
Tryptophan	42	67	II			
Tyrosine	48	- 	12			

TABLE I

 R_F imes 100 values on polyamide

* Supported by NIH General Research Supplies Grant (FR-05416-07) and NIH Research Grant HE-05711.

J. Chromatog., 42 (1969) 134-136

BLE II

AY COMBINATIONS

bstance	1 st Ethylene- diamine	2nd p-Nitro- aniline	1st Ethylene- diamine	2nd Sulfanilic acid	1st p-Nitro- aniline	2nd Ethylene- diamine	1st Sulfanilic acid	2nd Ethylene- diamine
inephrine	yellow	purple	yellow	red- orange	brown	purple	red	white
repinephrine	orange	purple	orange	red- orange	brown	pink		white
rmetanephrine tanephrine hydroxymandelic acid pamine	quench quench orange white	purple purple purple purple	quench quench orange white	orange orange orange red-	purple purple brown brown	pink pink pink pink	orange orange orange	quench quench white white
nilmandelic acid Aethoxy-4-hydroxy-	quench	purple	quench	orange orange	purple	pink	orange	white
phenylglycol pa	quench white	purple	quench white	orange	purple brown	quench pink	orange	quench white
renochrome ramine rotonin	yellow quench white	yellow pink	yellow — light green	orange orange	purple purple pink	quench — quench	orange yellow red	pink quench orange
hydroxyphenylacetic acid	yellow- orange	orange	yellow	yellow	pink	pink	orange	pink
omogentisic acid	yellow	yellow	yellow- orange	yellow- orange	brown	orange	yellow- orange	yellow- orange
Hydroxytryptophan iiodotyrosine lenylpyruvic acid yptophan	yellow quench white white	pink purple light purple	white quench white white	red purple 	red blue yellow	white quench yellow white	red purple pink —	white quench white white
rosine	white				purple		yellow	white

in the visible range. The ethylenediamine condensations were examined under U.V. light.

Results

The $R_F \times 100$ values are shown in Table I for all the aromatic amino acid derivatives studied. The data obtained with isopropanol-ammonia (4:1) and butanol-

TABLE III

Substance	Solvent system					
	Isobutanol– acetic acid– cyclohexane	Isopropanol– ammonia				
Epinephrine	8	22	II			
Norepinephrine	34	39	6			
Normetanephrine	10	59	69			
Metanephrine	15	47	45			
Dihydroxymandelic acid	15	32	13			
Dopamine		49	55			

J. Chromatog., 42 (1969) 134-136

acetic acid-water (4:1:1) are also shown as we have found these to be valuable alternate solvent systems for proving the identity of substances and/or for performing two-dimensional TLC on polyamide for the purpose of resolving a mixture of metabolites as found in an extract of urine.

We have found the sequential use of two sprays to be a valuable adjunct in identifying the components of mixtures of unknown substances. Table II indicates the color development for each substance when studied sequentially.

Similarly, if large amounts of the substance are available they can be analyzed on pre-coated silica gel plates, (using the same solvent systems and sprays), as indicated in Table III. However, color development with the diazotized sprays will be different. With sulfanilic acid all of the substances in Table III will be orange in all solvent systems. With p-nitroaniline they will be red in the isopropanol-ammonia system and dark orange in the butanol-acetic acid system. In the isobutanol-cyclohexane-acetic acid system the metabases will be red and the others yellow with diazotized p-nitroaniline.

JOSEPH D. SAPIRA

Psychosomatic Section, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pa. (U.S.A.)

I R. SEGURA-CARDONA AND K. SOEHRING, Med. Exp., 10 (1964) 251.

2 K. RANDERATH (Editor), Thin-Layer Chromatography, Academic Press, New York and London, 1966, pp. 108-109.

Received March 19th, 1969

J. Chromatog., 42 (1969) 134-136

снком. 4056

Chromatography of cyclic 3'5'-adenosine monophosphate on silica gel glass microfiber sheets

In the process of devising an assay for adenyl cyclase¹, it became apparent tha, a thin-layer chromatographic system for the rapid separation of the reaction product cyclic 3'5'-adenosine phosphate (cAMP) from its precursor adenosine triphosphate (ATP) and other adenine nucleotides would be highly desirable. A satisfactory system using silica gel glass plates has been described², but running time is rather long, and scraping and extraction of the gel is necessary for radioactive analysis. This report is concerned with the separation of cAMP from ATP, 5'-AMP and adenosine (Ado) on silica gel glass microfiber sheets. The procedure provides for rapid development (about 25 min) and ease of counting radioactive samples by scintillation spectroscopy.

Methods and materials

Glass microfiber sheets (20 \times 20 cm Gelman ITLC type SG) were spotted with

J. Chromatog., 42 (1969) 136-139